Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 33(8): e17320, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38506152

RESUMO

Sexual reproduction is a major driver of adaptation and speciation in eukaryotes. In diatoms, siliceous microalgae with a unique cell size reduction-restitution life cycle and among the world's most prolific primary producers, sex also acts as the main mechanism for cell size restoration through the formation of an expanding auxospore. However, the molecular regulators of the different stages of sexual reproduction and size restoration are poorly explored. Here, we combined RNA sequencing with the assembly of a 55 Mbp reference genome for Cylindrotheca closterium to identify patterns of gene expression during different stages of sexual reproduction. These were compared with a corresponding transcriptomic time series of Seminavis robusta to assess the degree of expression conservation. Integrative orthology analysis revealed 138 one-to-one orthologues that are upregulated during sex in both species, among which 56 genes consistently upregulated during cell pairing and gametogenesis, and 11 genes induced when auxospores are present. Several early, sex-specific transcription factors and B-type cyclins were also upregulated during sex in other pennate and centric diatoms, pointing towards a conserved core regulatory machinery for meiosis and gametogenesis across diatoms. Furthermore, we find molecular evidence that the pheromone-induced cell cycle arrest is short-lived in benthic diatoms, which may be linked to their active mode of mate finding through gliding. Finally, we exploit the temporal resolution of our comparative analysis to report the first marker genes for auxospore identity called AAE1-3 ("Auxospore-Associated Expression"). Altogether, we introduce a multi-species model of the transcriptional dynamics during size restoration in diatoms and highlight conserved gene expression dynamics during different stages of sexual reproduction.


Assuntos
Diatomáceas , Diatomáceas/genética , Reprodução/genética , Meiose , Genoma , Transcriptoma/genética
2.
EMBO Rep ; 24(4): e56271, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36718777

RESUMO

Although strongly influenced by environmental conditions, lateral root (LR) positioning along the primary root appears to follow obediently an internal spacing mechanism dictated by auxin oscillations that prepattern the primary root, referred to as the root clock. Surprisingly, none of the hitherto characterized PIN- and ABCB-type auxin transporters seem to be involved in this LR prepatterning mechanism. Here, we characterize ABCB15, 16, 17, 18, and 22 (ABCB15-22) as novel auxin-transporting ABCBs. Knock-down and genome editing of this genetically linked group of ABCBs caused strongly reduced LR densities. These phenotypes were correlated with reduced amplitude, but not reduced frequency of the root clock oscillation. High-resolution auxin transport assays and tissue-specific silencing revealed contributions of ABCB15-22 to shootward auxin transport in the lateral root cap (LRC) and epidermis, thereby explaining the reduced auxin oscillation. Jointly, these data support a model in which LRC-derived auxin contributes to the root clock amplitude.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Transporte Biológico , Proteínas de Membrana Transportadoras/genética , Ácidos Indolacéticos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Plant Cell ; 34(10): 3844-3859, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35876813

RESUMO

The Arabidopsis thaliana GSK3-like kinase, BRASSINOSTEROID-INSENSITIVE2 (BIN2) is a key negative regulator of brassinosteroid (BR) signaling and a hub for crosstalk with other signaling pathways. However, the mechanisms controlling BIN2 activity are not well understood. Here we performed a forward genetic screen for resistance to the plant-specific GSK3 inhibitor bikinin and discovered that a mutation in the ADENOSINE MONOPHOSPHATE DEAMINASE (AMPD)/EMBRYONIC FACTOR1 (FAC1) gene reduces the sensitivity of Arabidopsis seedlings to both bikinin and BRs. Further analyses revealed that AMPD modulates BIN2 activity by regulating its oligomerization in a hydrogen peroxide (H2O2)-dependent manner. Exogenous H2O2 induced the formation of BIN2 oligomers with a decreased kinase activity and an increased sensitivity to bikinin. By contrast, AMPD activity inhibition reduced the cytosolic reactive oxygen species (ROS) levels and the amount of BIN2 oligomers, correlating with the decreased sensitivity of Arabidopsis plants to bikinin and BRs. Furthermore, we showed that BIN2 phosphorylates AMPD to possibly alter its function. Our results uncover the existence of an H2O2 homeostasis-mediated regulation loop between AMPD and BIN2 that fine-tunes the BIN2 kinase activity to control plant growth and development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Monofosfato de Adenosina/metabolismo , Aminopiridinas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Brassinosteroides/farmacologia , Regulação da Expressão Gênica de Plantas , Quinase 3 da Glicogênio Sintase/genética , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Succinatos
4.
Curr Biol ; 32(9): 1909-1923.e5, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35316654

RESUMO

Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are tethered to the outer leaflet of the plasma membrane where they function as key regulators of a plethora of biological processes in eukaryotes. Self-incompatibility (SI) plays a pivotal role regulating fertilization in higher plants through recognition and rejection of "self" pollen. Here, we used Arabidopsis thaliana lines that were engineered to be self-incompatible by expression of Papaver rhoeas SI determinants for an SI suppressor screen. We identify HLD1/AtPGAP1, an ortholog of the human GPI-inositol deacylase PGAP1, as a critical component required for the SI response. Besides a delay in flowering time, no developmental defects were observed in HLD1/AtPGAP1 knockout plants, but SI was completely abolished. We demonstrate that HLD1/AtPGAP1 functions as a GPI-inositol deacylase and that this GPI-remodeling activity is essential for SI. Using GFP-SKU5 as a representative GPI-AP, we show that the HLD1/AtPGAP1 mutation does not affect GPI-AP production and targeting but affects their cleavage and release from membranes in vivo. Our data not only implicate GPI-APs in SI, providing new directions to investigate SI mechanisms, but also identify a key functional role for GPI-AP remodeling by inositol deacylation in planta.


Assuntos
Arabidopsis , Papaver , Arabidopsis/metabolismo , Glicosilfosfatidilinositóis/genética , Glicosilfosfatidilinositóis/metabolismo , Humanos , Inositol/metabolismo , Papaver/genética , Papaver/metabolismo , Pólen/metabolismo
5.
Genome Biol Evol ; 14(2)2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35106561

RESUMO

Recent studies have suggested that species of the Kazachstania genus may be interesting models of yeast domestication. Among these, Kazachstania barnettii has been isolated from various microbially transformed foodstuffs such as sourdough bread and kefir. In the present work, we sequence, assemble, and annotate the complete genomes of two K. barnettii strains: CLIB 433, being one of the two reference strains for K. barnettii that was isolated as a spoilage organism in soft drink, and CLIB 1767, recently isolated from artisan bread-making sourdough. Both assemblies are of high quality with N50 statistics greater than 1.3 Mb and BUSCO score greater than 99%. An extensive comparison of the two obtained genomes revealed very few differences between the two K. barnettii strains, considering both genome structure and gene content. The proposed genome assemblies will constitute valuable references for future comparative genomic, population genomic, or transcriptomic studies of the K. barnettii species.


Assuntos
Saccharomycetales , Pão , Fermentação , Saccharomycetales/genética , Leveduras
6.
Front Plant Sci ; 12: 690857, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178007

RESUMO

Pine wilt disease (PWD), caused by the plant-parasitic nematode Bursaphelenchus xylophilus, has become a severe environmental problem in the Iberian Peninsula with devastating effects in Pinus pinaster forests. Despite the high levels of this species' susceptibility, previous studies reported heritable resistance in P. pinaster trees. Understanding the basis of this resistance can be of extreme relevance for future programs aiming at reducing the disease impact on P. pinaster forests. In this study, we highlighted the mechanisms possibly involved in P. pinaster resistance to PWD, by comparing the transcriptional changes between resistant and susceptible plants after infection. Our analysis revealed a higher number of differentially expressed genes (DEGs) in resistant plants (1,916) when compared with susceptible plants (1,226). Resistance to PWN is mediated by the induction of the jasmonic acid (JA) defense pathway, secondary metabolism pathways, lignin synthesis, oxidative stress response genes, and resistance genes. Quantification of the acetyl bromide-soluble lignin confirmed a significant increase of cell wall lignification of stem tissues around the inoculation zone in resistant plants. In addition to less lignified cell walls, susceptibility to the pine wood nematode seems associated with the activation of the salicylic acid (SA) defense pathway at 72 hpi, as revealed by the higher SA levels in the tissues of susceptible plants. Cell wall reinforcement and hormone signaling mechanisms seem therefore essential for a resistance response.

7.
Ecol Evol ; 10(18): 9788-9807, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33005345

RESUMO

Adaptation of long-living forest trees to respond to environmental changes is essential to secure their performance under adverse conditions. Water deficit is one of the most significant stress factors determining tree growth and survival. Maritime pine (Pinus pinaster Ait.), the main source of softwood in southwestern Europe, is subjected to recurrent drought periods which, according to climate change predictions for the years to come, will progressively increase in the Mediterranean region. The mechanisms regulating pine adaptive responses to environment are still largely unknown. The aim of this work was to go a step further in understanding the molecular mechanisms underlying maritime pine response to water stress and drought tolerance at the whole plant level. A global transcriptomic profiling of roots, stems, and needles was conducted to analyze the performance of siblings showing contrasted responses to water deficit from an ad hoc designed full-sib family. Although P. pinaster is considered a recalcitrant species for vegetative propagation in adult phase, the analysis was conducted using vegetatively propagated trees exposed to two treatments: well-watered and moderate water stress. The comparative analyses led us to identify organ-specific genes, constitutively expressed as well as differentially expressed when comparing control versus water stress conditions, in drought-sensitive and drought-tolerant genotypes. Different response strategies can point out, with tolerant individuals being pre-adapted for coping with drought by constitutively expressing stress-related genes that are detected only in latter stages on sensitive individuals subjected to drought.

9.
Nat Commun ; 11(1): 3320, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620776

RESUMO

Benthic diatoms are the main primary producers in shallow freshwater and coastal environments, fulfilling important ecological functions such as nutrient cycling and sediment stabilization. However, little is known about their evolutionary adaptations to these highly structured but heterogeneous environments. Here, we report a reference genome for the marine biofilm-forming diatom Seminavis robusta, showing that gene family expansions are responsible for a quarter of all 36,254 protein-coding genes. Tandem duplications play a key role in extending the repertoire of specific gene functions, including light and oxygen sensing, which are probably central for its adaptation to benthic habitats. Genes differentially expressed during interactions with bacteria are strongly conserved in other benthic diatoms while many species-specific genes are strongly upregulated during sexual reproduction. Combined with re-sequencing data from 48 strains, our results offer insights into the genetic diversity and gene functions in benthic diatoms.


Assuntos
Adaptação Fisiológica/genética , Diatomáceas/genética , Ecossistema , Evolução Molecular , Genoma/genética , Diatomáceas/classificação , Diatomáceas/metabolismo , Água Doce , Tamanho do Genoma , Genômica/métodos , Polimorfismo de Nucleotídeo Único , Água do Mar , Especificidade da Espécie , Transcriptoma/genética
10.
G3 (Bethesda) ; 10(8): 2683-2696, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32546502

RESUMO

Understanding the consequences of local adaptation at the genomic diversity is a central goal in evolutionary genetics of natural populations. In species with large continuous geographical distributions the phenotypic signal of local adaptation is frequently clear, but the genetic basis often remains elusive. We examined the patterns of genetic diversity in Pinus sylvestris, a keystone species in many Eurasian ecosystems with a huge distribution range and decades of forestry research showing that it is locally adapted to the vast range of environmental conditions. Making P. sylvestris an even more attractive subject of local adaptation study, population structure has been shown to be weak previously and in this study. However, little is known about the molecular genetic basis of adaptation, as the massive size of gymnosperm genomes has prevented large scale genomic surveys. We generated a both geographically and genomically extensive dataset using a targeted sequencing approach. By applying divergence-based and landscape genomics methods we identified several loci contributing to local adaptation, but only few with large allele frequency changes across latitude. We also discovered a very large (ca. 300 Mbp) putative inversion potentially under selection, which to our knowledge is the first such discovery in conifers. Our results call for more detailed analysis of structural variation in relation to genomic basis of local adaptation, emphasize the lack of large effect loci contributing to local adaptation in the coding regions and thus point out the need for more attention toward multi-locus analysis of polygenic adaptation.


Assuntos
Pinus sylvestris , Pinus , Adaptação Fisiológica/genética , Ecossistema , Variação Genética , Genética Populacional , Genômica , Pinus sylvestris/genética , Seleção Genética
11.
Genome Biol ; 21(1): 148, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32552806

RESUMO

Hi-C exploits contact frequencies between pairs of loci to bridge and order contigs during genome assembly, resulting in chromosome-level assemblies. Because few robust programs are available for this type of data, we developed instaGRAAL, a complete overhaul of the GRAAL program, which has adapted the latter to allow efficient assembly of large genomes. instaGRAAL features a number of improvements over GRAAL, including a modular correction approach that optionally integrates independent data. We validate the program using data for two brown algae, and human, to generate near-complete assemblies with minimal human intervention.


Assuntos
Cromossomos , Genômica/métodos , Alga Marinha/genética , Software , Humanos
12.
Front Plant Sci ; 11: 191, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32231673

RESUMO

Gray leaf spot (GLS) disease in maize, caused by the fungus Cercospora zeina, is a threat to maize production globally. Understanding the molecular basis for quantitative resistance to GLS is therefore important for food security. We developed a de novo assembly pipeline to identify candidate maize resistance genes. Near-isogenic maize lines with and without a QTL for GLS resistance on chromosome 10 from inbred CML444 were produced in the inbred B73 background. The B73-QTL line showed a 20% reduction in GLS disease symptoms compared to B73 in the field (p = 0.01). B73-QTL leaf samples from this field experiment conducted under GLS disease pressure were RNA sequenced. The reads that did not map to the B73 or C. zeina genomes were expected to contain novel defense genes and were de novo assembled. A total of 141 protein-coding sequences with B73-like or plant annotations were identified from the B73-QTL plants exposed to C. zeina. To determine whether candidate gene expression was induced by C. zeina, the RNAseq reads from C. zeina-challenged and control leaves were mapped to a master assembly of all of the B73-QTL reads, and differential gene expression analysis was conducted. Combining results from both bioinformatics approaches led to the identification of a likely candidate gene, which was a novel allele of a lectin receptor-like kinase named L-RLK-CML that (i) was induced by C. zeina, (ii) was positioned in the QTL region, and (iii) had functional domains for pathogen perception and defense signal transduction. The 817AA L-RLK-CML protein had 53 amino acid differences from its 818AA counterpart in B73. A second "B73-like" allele of L-RLK was expressed at a low level in B73-QTL. Gene copy-specific RT-qPCR confirmed that the l-rlk-cml transcript was the major product induced four-fold by C. zeina. Several other expressed defense-related candidates were identified, including a wall-associated kinase, two glutathione s-transferases, a chitinase, a glucan beta-glucosidase, a plasmodesmata callose-binding protein, several other receptor-like kinases, and components of calcium signaling, vesicular trafficking, and ethylene biosynthesis. This work presents a bioinformatics protocol for gene discovery from de novo assembled transcriptomes and identifies candidate quantitative resistance genes.

13.
F1000Res ; 9: 775, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33163158

RESUMO

Background: At the time of publication, the most devastating desert locust crisis in decades is affecting East Africa, the Arabian Peninsula and South-West Asia. The situation is extremely alarming in East Africa, where Kenya, Ethiopia and Somalia face an unprecedented threat to food security and livelihoods. Most of the time, however, locusts do not occur in swarms, but live as relatively harmless solitary insects. The phenotypically distinct solitarious and gregarious locust phases differ markedly in many aspects of behaviour, physiology and morphology, making them an excellent model to study how environmental factors shape behaviour and development. A better understanding of the extreme phenotypic plasticity in desert locusts will offer new, more environmentally sustainable ways of fighting devastating swarms. Methods: High molecular weight DNA derived from two adult males was used for Mate Pair and Paired End Illumina sequencing and PacBio sequencing. A reliable reference genome of Schistocerca gregaria was assembled using the ABySS pipeline, scaffolding was improved using LINKS. Results: In total, 1,316 Gb Illumina reads and 112 Gb PacBio reads were produced and assembled. The resulting draft genome consists of 8,817,834,205 bp organised in 955,015 scaffolds with an N50 of 157,705 bp, making the desert locust genome the largest insect genome sequenced and assembled to date. In total, 18,815 protein-encoding genes are predicted in the desert locust genome, of which 13,646 (72.53%) obtained at least one functional assignment based on similarity to known proteins. Conclusions: The desert locust genome data will contribute greatly to studies of phenotypic plasticity, physiology, neurobiology, molecular ecology, evolutionary genetics and comparative genomics, and will promote the desert locust's use as a model system. The data will also facilitate the development of novel, more sustainable strategies for preventing or combating swarms of these infamous insects.


Assuntos
Gafanhotos , Animais , Sequência de Bases , Genoma de Inseto , Gafanhotos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Quênia , Masculino
14.
Genes (Basel) ; 10(12)2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31757073

RESUMO

ORCAE (Online Resource for Community Annotation of Eukaryotes) is a public genome annotation curation resource. ORCAE-AOCC is a branch that is dedicated to the genomes published as part of the African Orphan Crops Consortium (AOCC). The motivation behind the development of the ORCAE platform was to create a knowledge-based website where the research-community can make contributions to improve genome annotations. All changes to any given gene-model or gene description are stored, and the entire annotation history can be retrieved. Genomes can either be set to "public" or "restricted" mode; anonymous users can browse public genomes but cannot make any changes. Aside from providing a user- friendly interface to view genome annotations, the platform also includes tools and information (such as gene expression evidence) that enables authorized users to edit and validate genome annotations. The ORCAE-AOCC platform will enable various stakeholders from around the world to coordinate their efforts to annotate and study underutilized crops.


Assuntos
Bases de Dados Genéticas , Genoma de Planta , Anotação de Sequência Molecular
15.
Curr Biol ; 28(18): 2921-2933.e5, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30220504

RESUMO

We report here the 98.5 Mbp haploid genome (12,924 protein coding genes) of Ulva mutabilis, a ubiquitous and iconic representative of the Ulvophyceae or green seaweeds. Ulva's rapid and abundant growth makes it a key contributor to coastal biogeochemical cycles; its role in marine sulfur cycles is particularly important because it produces high levels of dimethylsulfoniopropionate (DMSP), the main precursor of volatile dimethyl sulfide (DMS). Rapid growth makes Ulva attractive biomass feedstock but also increasingly a driver of nuisance "green tides." Ulvophytes are key to understanding the evolution of multicellularity in the green lineage, and Ulva morphogenesis is dependent on bacterial signals, making it an important species with which to study cross-kingdom communication. Our sequenced genome informs these aspects of ulvophyte cell biology, physiology, and ecology. Gene family expansions associated with multicellularity are distinct from those of freshwater algae. Candidate genes, including some that arose following horizontal gene transfer from chromalveolates, are present for the transport and metabolism of DMSP. The Ulva genome offers, therefore, new opportunities to understand coastal and marine ecosystems and the fundamental evolution of the green lineage.


Assuntos
Evolução Biológica , Genoma , Traços de História de Vida , Ulva/genética , Mapeamento Cromossômico , Família Multigênica , Ulva/crescimento & desenvolvimento
16.
F1000Res ; 72018.
Artigo em Inglês | MEDLINE | ID: mdl-29568489

RESUMO

As a part of the ELIXIR-EXCELERATE efforts in capacity building, we present here 10 steps to facilitate researchers getting started in genome assembly and genome annotation. The guidelines given are broadly applicable, intended to be stable over time, and cover all aspects from start to finish of a general assembly and annotation project. Intrinsic properties of genomes are discussed, as is the importance of using high quality DNA. Different sequencing technologies and generally applicable workflows for genome assembly are also detailed. We cover structural and functional annotation and encourage readers to also annotate transposable elements, something that is often omitted from annotation workflows. The importance of data management is stressed, and we give advice on where to submit data and how to make your results Findable, Accessible, Interoperable, and Reusable (FAIR).

17.
Proc Natl Acad Sci U S A ; 114(44): E9413-E9422, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29078332

RESUMO

Here we present the genome sequence and annotation of the wild olive tree (Olea europaea var. sylvestris), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae lineage-specific paleopolyploidy events, dated at ∼28 and ∼59 Mya. These events contributed to the expansion and neofunctionalization of genes and gene families that play important roles in oil biosynthesis. The functional divergence of oil biosynthesis pathway genes, such as FAD2, SACPD, EAR, and ACPTE, following duplication, has been responsible for the differential accumulation of oleic and linoleic acids produced in olive compared with sesame, a closely related oil crop. Duplicated oleaster FAD2 genes are regulated by an siRNA derived from a transposable element-rich region, leading to suppressed levels of FAD2 gene expression. Additionally, neofunctionalization of members of the SACPD gene family has led to increased expression of SACPD2, 3, 5, and 7, consequently resulting in an increased desaturation of steric acid. Taken together, decreased FAD2 expression and increased SACPD expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics.


Assuntos
Vias Biossintéticas/genética , Genoma de Planta/genética , Óleos/metabolismo , Olea/genética , Evolução Biológica , Ácidos Graxos Dessaturases/genética , Expressão Gênica/genética , Ácidos Linoleicos/genética , Olea/metabolismo , Ácido Oleico/genética , RNA Interferente Pequeno/genética
18.
Sci Rep ; 7(1): 13940, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29066768

RESUMO

Proteins are fundamental to life and exhibit a wide diversity of activities, some of which are toxic. Therefore, assessing whether a specific protein is safe for consumption in foods and feeds is critical. Simple BLAST searches may reveal homology to a known toxin, when in fact the protein may pose no real danger. Another challenge to answer this question is the lack of curated databases with a representative set of experimentally validated toxins. Here we have systematically analyzed over 10,000 manually curated toxin sequences using sequence clustering, network analysis, and protein domain classification. We also developed a functional sequence signature method to distinguish toxic from non-toxic proteins. The current database, combined with motif analysis, can be used by researchers and regulators in a hazard screening capacity to assess the potential of a protein to be toxic at early stages of development. Identifying key signatures of toxicity can also aid in redesigning proteins, so as to maintain their desirable functions while reducing the risk of potential health hazards.


Assuntos
Biologia Computacional , Proteínas/metabolismo , Toxinas Biológicas/metabolismo , Sequência de Aminoácidos , Análise por Conglomerados , Bases de Dados de Proteínas , Ordem dos Genes , Modelos Moleculares , Domínios Proteicos , Proteínas/química , Risco , Toxinas Biológicas/química
19.
PLoS One ; 12(9): e0184454, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28886111

RESUMO

Contrary to the many whole genome duplication events recorded for angiosperms (flowering plants), whole genome duplications in gymnosperms (non-flowering seed plants) seem to be much rarer. Although ancient whole genome duplications have been reported for most gymnosperm lineages as well, some are still contested and need to be confirmed. For instance, data for ginkgo, but particularly cycads have remained inconclusive so far, likely due to the quality of the data available and flaws in the analysis. We extracted and sequenced RNA from both the cycad Encephalartos natalensis and Ginkgo biloba. This was followed by transcriptome assembly, after which these data were used to build paralog age distributions. Based on these distributions, we identified remnants of an ancient whole genome duplication in both cycads and ginkgo. The most parsimonious explanation would be that this whole genome duplication event was shared between both species and had occurred prior to their divergence, about 300 million years ago.


Assuntos
Cycadopsida/genética , Duplicação Gênica , Genoma de Planta , Genômica , Cycadopsida/classificação , Perfilação da Expressão Gênica , Genômica/métodos , Ginkgo biloba/genética , Filogenia , Transcriptoma
20.
Genom Data ; 13: 41-43, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28725555

RESUMO

Kazachstania saulgeensis is a recently described species isolated from French organic sourdough. Here, we report the high quality genome sequence of a monosporic segregant of the type strain of this species, CLIB 1764T (= CBS 14374T). The genome has a total length of 12.9 Mb and contains 5326 putative protein-coding genes, excluding pseudogenes and transposons. The nucleotide sequences were deposited into the European Nucleotide Archive under the genome assembly accession numbers FXLY01000001-FXLY01000017.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...